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Rotation average in light cone time-ordered perturbation theory
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We present a rotation average of the two-body scattering amplitude in light cone(tiyadered pertur-
bation theory. Using a rotation average procedure, we show that the contribution of an individual time-ordered
diagram can be quantified in a Lorentz invariant way. The number of time-ordered diagrams can also be
reduced by half, if the masses of the two bodies are the same. In the numerical exagplbedry, we find
that the higher Fock-state contribution is quite small in light cone quantiza&@h56-282(198)11420-(

PACS numbgs): 11.80.Et, 11.10.St, 11.55.Bq

[. INTRODUCTION plitudes[6]. In this paper, we give an example of rotation
advantage in OFPT. If we make a rotation average of the
The invariant amplitude obtained by calculating a covari-individual diagram, then the result is of course invariant un-
ant Feynman diagram can equivalently be given by the surder rotation and thus the individual diagram can be made
of the corresponding time-ordered diagrams in old fashioneéhvariant under the rotation. The similar average procedure
perturbation theoryOFPT). As is well known[1,2], the in-  for the boost operation cannot be made in the etuglan-
dividual time-ordered diagram is not invariant under some otization because the parameter space of boost, i.e., velocity is
the Lorentz transformations, e.g., boost or rotation, while thenot compact. As we will show explicitly in this work, the
covariant Feynman diagram is completely Lorentz invariantindividual ~ordered diagram can be made invariant under
Under which part of the Lorentz transformations the indi-the entire Lorentz transformation using an average proce-
vidual diagram is not invariant depends on whether we uséure. Furthermore, in the calculations of the two-body scat-
ordinary equal-quantization or light cone equalguantiza-  tering amplitudes where the masses of two bodies are same,
tion where r=t+z/c. The Poincarealgebra in these two one does not need to calculate the entire numberartiered
schemes is significantly different. It is often remarked that indiagrams, but to calculate only the half of the entire number
the equal quantization, the boost operation is dynamic andof diagrams because the half of total number of diagrams is
the rotation is kinematic, while in the equalguantization, reproduced by the other half. Thus, one can evaluate the
the rotation is dynamic and the boost operation is kinematiegnagnitude of each diagram in the Lorentz invariant way
[3]. These significantly different features of Poincalgebra  once the average procedure is fixed.
in two schemes lead to the noninvariance of the individual In the example of this work, we found that the higher
diagrams under different parts of Lorentz transformations. IrfFock-state contribution is very small in the light cone quan-
the equal quantization, the individual diagram is not invari- tization. Our nontrivial point is that this smallness can be
ant under the boost transformation, while in the eqgual- asserted in a reference-frame independent way. Without loss
guantization, the individual diagram is not invariant underof generality, but for simplicity, we show this point using an
the rotation. However, it is crucial to note that the propertyexplicit example of Feynman amplitudes i+ theory [7].
of rotation is very different from the property of boost op- However, our method is generic to the equajuantization
eration because the rotation is compact i.e., closed and pegeheme, and thus applicable to any other field theory. In this
odic, while the boost operation is open and not periodicwork, we calculate the lowest order two-body interaction
Thus, one may take advantage of the rotation in equal-diagrams shown in Figs. 1-3 and the real part of one higher
guantization. Already, M. Fud§4] suggested the angular order ladder diagram shown in Figs. 4 and 5. The generation
averaging of the potential as a way of restoring Poincaref these diagrams from the covariant Bethe-Salpeter kernel
invariance in the explicit example ofN scattering problem. was discussed in Reff8]. A general algorithm of producing
We have also realized that the physical on-shell partial wavéhe mordered diagrams from any Feynman diagram was also
amplitudes presented in R¢b] were in fact identical to the
rotation average of the light cone scattering partial wave am- t t

—_ —

FIG. 2. The lowest diagrams for a scattering amplitude in the
FIG. 1. The lowest diagram for a scattering amplitude in CVPT. t-ordered OFPT.
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FIG. 3. The lowest diagrams for a scattering amplitude in the X B y . B y
7-ordered OFPT. Only light cone plii#8) momentum fraction is
shown. Xz \Z':V /—x /-2
. . 1z 1z 1y 1-x 1z 1y
recently presented by Ligterink and BakK&]. In Sec. I, - )

we present analytic calculations of Feynman diagrams shown
in Figs. 3 and 5. In Sec. lll, the numerical computations are

made and the results are summarized. Conclusions and dis- .
cussions follow in Sec. IV. In the Appendix, the equivalence "W %/Z
is shown between the covariant next-to-leading order ladder -

diagram and the sum afordered diagramfs,9].

3 6)

1. SCATTERING AMPLITUDE FIG. 5. The next-to-leading order diagrams for two-body scat-
) ) tering amplitude in ther-ordered OFPT. Only light cone pl(s)
In the ¢* covariant perturbation theolCVPT), the low-  momentum fraction is shown.
est order Feynman amplitude for the two-body scattering is
g!ven by.the.smgle dlagramd show;n in Fig. 1. Th|ds_ smglemg amplitudes M i(O)(k,Lﬁ)l i=1,2 for the two diagrams in
lagram in Fig. 1 corresponds to the sum of two lagramsiy 3. are given bymodulo a common constant factor
shown in Fig. 2 in the ordinary tingg-ordered OFPT. How- g2 g Y )

ever, as we have _cilscpsseq in the Intrqduc(Sec. ), each M(f’)(k,l,ﬁ): FLO0K, 0y, 2.1)
separate diagram in Fig. 2 is not boost invariant even though

it is invariant under rotation. Only the sum of the two dia- (0) A e Lo
grams is completely Lorentz invariant. Now, let us consider M2 (kL =Fa(1=x,~k 3 1=y, =), 22
changing the time in OFPT frornto the light cone timer B )
=t+x-n/c wheren is a unit vector on the light cone surface =Fu(l=xk 1=y, 23
(e.g.,7=t+z/c meansn=2). If we change front to r, then where
we still have two mordered diagrams as shown in Fig. 3
which apparently look identical to those in Fig. 2. However, 2 2 |2 2
i ) - o X— ki+m® I{+m
each diagram in Fig. 3 depends orand one can easily find Fixk :y,l)= x=y) (ki —
that it is not invariant under rotation, but nevertheless invari- X—y X y
ant under boost. This drastic change of the Lorentz property (K, —1,)2+ u? -1
from the case of Fig. 2 is exactly what allows us to make an _TW TR (2.4)
average of each diagram. By taking advantage of compact- X~y
ness in the rotation, we now take the average value of each, . .
diagram in Fig. 3 oven with i being the mass of exchanged particle, and
After diagrams are averaged owgrthe restoration of the N -
rotational symmetry is manifest for each diagram. Of course, Y= k_ E n k-n 2.5
the sum of diagrams remains same whether we take the av- Pt 2 J+m2)’ ’
erage ovem or not. If the two particles of mass scatter
with the initial (final) c.m. momentunk(l), then the scatter- torT
k q l
k-q q-l

Pk Pq Pl
' FIG. 6. A sample diagram which appears in therdered OFPT,
FIG. 4. The next-to-leading order ladder diagram for two-bodybut does not appear in theordered OFPT. Only light cone plis)
scattering amplitude in CVPT. momentum fraction is shown.
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FIG. 7. The scattering amplitude of each diagram &+ 0. 0, axis and¢, axis are scaled in units of/10 and in units ofz/5,
respectively.

_|+_1 . IR - because
V== 2\ o) (2.6)
o MO (k,I,— ) =MV (k,1,n). (2.11
k, =k—(k-n)n, (2.7
I, =1—(l-n)n. (2.8  We may summarize our results for the lowest order as fol-
lows:
From Egs. (2.5-(2.8, one can easily note that
(x;k, 3yl ) —(1—x;k, ;1—y;l,) ash——n. Also, F, de-
pends only on the relative sign kf andl, . Thus, if we take 2 2
the average oM(V(k,1,n) overn and defineM(V(k,1) as M(SOL)JM(krl):_El Mi(o)(k,hn):_zl M@ (k)
i= i=
=~ (0) N PTCIAT =2MO(k,I) (2.12
MO(kh=7— | diM@(kLh), (2.9 1 (k1) :
then we find From this, we notice that, after averaging overwe not
~ 0 ~ 0 only restore the rotional symmetry for each separate diagram
M3 (k,D=M3"(k,I), (210 in Fig. 3, but also we can actually reduce the number of
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FIG. 8. The scattering amplitude of each diagram @+ 7/6. 6,, axis and¢, axis are scaled in units of/10 and in units ofm/5,
respectively.

diagrams necessary for the calculation by half for the twodadder diagram in CVPT as shown in Fig. 4.

body scattering amplitude. The reason for the reduction in While in thet-ordered OFPT there are 4224 diagrams,

the number of diagrams is due to the fact that —n cor ‘I’:Ve have onlly 6 d:ja_lgrams lnhtheorqlerle:_d OEPTSee Fig. 5.h
(11— (11— _ or example, a diagram shown in Fig. 6 appears intthe

respoqu tox .(1 x) andy—(1-y) .and the t\.NO body c%rdered OFPT, but not in theordered OFPT2,10].

scattering amplitude must be symmetric under this change o

variables. In order to show an explicit example beyond thq\ﬂi(l)(k,|,ﬁ), i=1,2,...,6 for the sixliagrams in Fig. 5 are

leading order, let us now consider the next-to-leading ordefjiven in therordered OFPT by

] Fi(x,k 52,0 )F(y,l, 5z,
o a-| [ | 2R
[ (] Fuxk ;z,0)F(1-y,—1, ;1-2,—

105020-4
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FIG. 9. The scattering amplitude of each diagram @+ 7/4. 6,, axis and¢, axis are scaled in units of/10 and in units ofx/5,
respectively.

~ F (X!k 1Zqu)F1(1_y’_IJ_11_ZI_q_L)

(1) — 1

Ms"(kil. )_[” Fa(x,k 52, 1=y, =1, ;1=2,—q,) ’ 219
[ []Ful=x—k ;1=z,—q)F(1-y,~1, ;1-z,—

Mﬂll)(k,l,n)=_J' 1(1=x,—k; 'Z:O()?,Lk) ;;(,qL)y L z Ch), (2.16
[ (TF1—x,—k, :1—z,—q,)F(y,l, :z

M(Sl)(k,hﬂ):_f 1( E ik ;quqi)l(y L Ch)' (2.1
~ [ [ Fi(1=x,—k_ ;1=2,—q)F(y.l;;z,9))

(1) _ 1 |
Me (k,l,n)—j Fo(1—x,—k, ;:1—z,—q, ::y,l, ;2,q,) ' (218
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FIG. 10. The scattering amplitude of each diagramtor 7/3. 6,, axis and¢, axis are scaled in units af/10 and in units ofa/5,
respectively.

whereF; is defined in Eq(2.4) and and
K+m? f+m? N -
. _ _ ~q 1 g-n
Fax.ky5z,q0 0 yl,52,00) . =q— (g A)A. 2.23

kK2+m? 12+m? , - :
= - In the Appendix, we show explicitly the equivalence be-
X 1-y tween the CVPT and the sum efrdered OFPT diagrams in

) (ki_q_L)2+/~L2_ (1, — )2+ 2 Fig. 5. Since ¢;q,)—(1—z,9,) ash— —n, we have

X—z y—2' ' MP(k,I,—h)=MP(k,1,n), (2.24
(229 M (k,1,—h)=MP(k,1,R), (2.25
Here,
MP(k,1,—n) =MP(k,1,A), (2.26)
-] o (w0, o 6 3
0 2z(1-2) ’ ' and thus
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Mk, =MD(k,), (2.27  values. However, the higher Fock-state contribution§’
andM Y turn out to be real because the intermediate state of
MP (k=ML k1), (2.28  higher Fock-states cannot go to the on-energy-shell. In this
numerical work, we will focus only on the real part of each
M<1)(k = M k1), (2.29  amplitude. For the Cauchy principle value calculation, we
change the integration variables,q, ), into (q) with the
where fixed n and do the integration over a spherical coordinate of
g. Since
M (k)= fan(l)(kI n). (2.30 o h

Vet

andg?=(qg-n)2+q°, one can obtain

_1 1 3.2
Z—E + (3.2

Again, we may summarize our results for the next-to-
leading order ladder diagrams as follows:

6 6
Mk =2 Mk LA =3 MY (k) dz _ d(qh) 33
= i=1 22(1_2)— ,—q2+m2, .
3
2 (k). (2.3)  and thus the integration measure defined in@g1) can be

rewritten as

Thus, we need to calculate only the thi@et six) diagrams 4

to obtain Mgld,\,l(k ). In the next section, we calculate nu- [f }: —q (3.4)
merically M, (i=1,2,...,6) andverify Egs. (2.27- NgT+m

(2.29. Our numerlcal results also show how small the higher where diq= q2d|q|dQ(q) Using the relations between the

(1) (1)
Fock-state contnbunorlvl (k’l)(M (kD)) is. variable setsX,k, ;y,l, ;z,q,) and(k,l,q) with the fixedn,
one can change the functioRg, F; andF, given by Egs.
IIl. CALCULATION SETUP (2.19, (2.4 and(2.20), respectively, as follows:

As shown explicitly byn-dependence, each amplitude in . a2 2
the equalsr OFPT does not have rotational symmetry. Nev- Fo(x.k, ;2,0,) =4(k" =), (3.5
ertheless, all ther-dependence from each amplitude must ) _ A,
cancel each other if we sum them up. The rotational symme- Fa(xkiiz,q) =Fa(knilgl, (@), 3.6
try must be recovered in the Feynman amplitude level. We . ot ol
~ Fa(x,k : I
first confirm this numerically usindv("(k,I,n) given by 2k iza 25 ayl)
Egs. (2.13-(2.18. Fo_r the ?lt;merlcal calcu_lauon, we first =F,(k1,A:[al,2(a):]a'],2(a).
observe that the amplitud®; ™’ are complex in general. We
thus separate the real and imaginary partMé)Jf) using the
usual relation Also, for the numerical calculation of a Cauchy principle
value (PV), we note that fox,>0

1
I|m —PV(— —im(x), (3.2 o f(X) o f(x)—f(x )
_o Xtie X pvj > ZZJ 0 (3.8
where PV(1X) is the principle value of ¥. Hence, the real
part of M{Y(k,I,A), i=1,2,4,5 are given by Cauchy principle Thus the real part ok{"(k,1,n) is given by
|
(X kl ,Z qL)Fl(y IL 1Z q_L)
Re[M{Y(k, I, P\{” : 3.9
M (k1)) = R (39
® F(k,1,n;[0,Q(q)—F(k,I,n;|k[,Q(q))
=| dQ d , 3.1
f (Q)( fo |d K= P (3.10
where
q2
F(k,1,n;10,Q2(9))= —=—= F1(kn;|q,Q(q))F.(,n;[q],2()). (3.13
| | 4\/m 1 | | 1 | |

105020-7
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FIG. 11. The scattering amplitude of each diagraméor 7/2. 6,, axis and¢,, axis are scaled in units af/10 and in units ofa/5,

respectively.

The real parts of all other amplitudes can be written simi-rotating the directiom in a given scattering plane defined by

larly.

IV. NUMERICAL RESULTS

its perpendicular directiokX | is equivalent to the effect of
rotatingkx1 in a given direction of the light cone time evo-
lution, e.g.,7=t+z. In any case, the point is the dynamics
dependent on the relative angle betwe@eandkx | [6].

For the explicit example of numerical results, we choose In Figs. 7—15, the scattering amplitudes of each diagram

the following kinematics without any loss of generality:

k=1k|(0,0,1), (4.2
I=1]k|(0,sin©,c0s0O), 4.2
n=(sin #,cos ¢,,,Ssin 6,sin ¢,,cos b,,), 4.3

where© is an angle betweek andl, and 6,(¢,) is a po-
lar(azimutha) angle ofn.

are plotted for|k|=1.0 andx=1.0 in units of a mass of
scattering particlem, with given scattering angle© =0,

76, w4, w3, w2, 2nl3, 3wl/4, 57/6 and 7. From these
figures, we can easily see that each amplitude has the depen-
dence on the angles dof, 6, and ¢,,, but the sum of all
amplitudesM £}y, is independent fron®, and ¢,, within the
numerical error. This shows the recovery of rotational sym-
metry in the Feynman amplitude levgll]. It is also very
interesting to note that higher Fock-state contribution§®

Because we are interested in the dependence of the scadd M§", are quite suppressgd2]. The similar behavior

tering amplitude on the direction, we fix the scattering
plane as the plane made §yndz and the direction of initial
momenturrk asz and then vary the directiom. The effect of

has been observed for various scattering artylerhe real
part numerical values dfl(*) are listed in Table | for various
© with given |k|/m=1.0,u/m=1.0. The Table | also veri-

105020-8
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FIG. 12. The scattering amplitude of each diagraméor 27/3. 4, axis and¢, axis are scaled in units af/10 and in units ofa/5,
respectively.

fiesMP=MP MP=ML andM{P=ME for variouso  actually compact. This feature is drastically different from
within the numerical errors. Finally in Table II, the real part the ordinary equal-quantization, where the dynamical part
of Swave scattering amplitude given by occurs in the boost operation, but the parameter space of this
L operation is not closed. We regard this as an explicit example
~ T . ~ 1 of advantage in the equal-quantization over the equal-
Re{Mi(S)}: 2 Jo sin 6dO Re{M‘( )} (4.9 guantization. The rotation average of eacbrdered scatter-
ing amplitude not only provided the Lorentz-invariant as-
is listed for various|k|/m=0.1,1.0,10 with givenu/m  sessment of each amplitude, but also reduced the number of
=1.0. This also numerically verifies the smallness of thediagrams to be calculated if the masses of two bodies are

higher Fock-state contributions. same. For the explicit numerical examples, we have calcu-
lated the real part of next-to-leading order ladder diagrams in
V. CONCLUSIONS AND DISCUSSIONS ¢° theory. As shown in Figs. 7—15, the sum of all diagrams

. . is always independent of the choice, i.e., reference-frame
In this work, we have shown that eaetordered ampli- independent or Lorentz invariant, even though eaeh

tude can be made as the Lorentz invariant amplitude by ta Srdered diagraml\(li(l), i=1,2,....6) is noLorentz invari-

ing advantage of a distinguished feature in the light cone nt. Also. the numerical values df-averaged amplitudes
guantization and making an average over the light cone suft ’ 9 P

. ~ . . . MO i — i i
face defined byi. Such process of averaging was possible in(Re(Mi }"_1'2*; il.),GLp(rSsented in Table I not only verify
the light cone quantization method because the rotatiofhe equivalenceM;”’=My, etc., but also show the signifi-
which is the dynamical part of this quantization method iscant suppression df1{)(M{Y) compared tav{M(M{M) or

105020-9
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FIG. 13. The scattering amplitude of each diagraméor 37/4. 0, axis and¢, axis are scaled in units af/10 and in units ofa/5,
respectively.

ME(ME) for whole range of scattering angle. The real part APPENDIX

: H 1 : . . .
of Swave scattering amplituded{d presented in Table Il In this appendix, we show the equivalence between the

also verify the negligible contribution from the higher Fock- CVPT diagram in Fig. 4 and the sum efordered OFPT
state intermediate states. Thusiveraging process exhibits a diagrams in Fig. 5. The method used in this Appendix was
unique advantage of assessing the contribution from eacfresented in Ref[8] for the Bethe-Salpeter approach. Re-
intermediate Fock-states. This brings up further interesting:enﬂy’ |_|gter|nk and Bakketg] also proposed a genera| al-
application to the gauge theory such as QED and QCD agorithm that produces the-ordered diagrams from any
well as to the multibody scattering amplitudes as futureFeynman diagram. The scattering amplitude from the dia-

works. gram in Fig. 4 is given by
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FIG. 14. The scattering amplitude of each diagram@or 57/6. 4, axis and¢, axis are scaled in units af/10 and in units ofa/5,
respectively.

In terms of light cone variablesq V(k,l) can be rewrit- If we define momentum fractions, y, z as
ten as
kT=xP",
. £ dg" [ d’q (= dg
M(l)(k,Ln):fP 5 I"=yP*,
o 2(2m) (2m)° J-= 27
1 q+EZP+,
X
q7q - —m’+ie and make a change of variable suchPisy™—q~, we ob-
tain
1
X
(Cmania—kmar=ptre - [ dz 1 1 dq
1 v 0 22m)z(1-2z) x—z2z-y ) (2m)?
X -
(P*=q")(P"—q ) —qi—m’+ie Xf* dg” 1 1 L
L = 2m 4 —0; 4 —d, 4 —03
@A 1) (a1 P rie 1
s X—, (A2)
(A1) qa —Q4
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FIG. 15. The scattering amplitude of each diagram @or 7. 6, axis and¢, axis are scaled in units o#/10 and in units ofm/5,
respectively.

TABLE I. The real part contributions of eadhaveraged scattering amplitudes for varigisvith fixed x=1.0m, |k|=1.0m.

) —ReMP} —Re{M} —Re[M{} —Re[M{} —Re[M} —ReMP} —Re[My,

0 0.6870 0.0000 0.0000 0.6858 0.0000 0.0000 1.3728
6 0.4906 0.1488 0.0050 0.4899 0.1492 0.0050 1.2884
4 0.4039 0.1907 0.0089 0.4036 0.1902 0.0089 1.2062
73 0.3315 0.2156 0.0125 0.3326 0.2159 0.0125 1.1207
72 0.2263 0.2417 0.0186 0.2258 0.2420 0.0186 0.9731
273 0.1599 0.2591 0.0231 0.1602 0.2588 0.0231 0.8842
3al4 0.1362 0.2690 0.0248 0.1366 0.2689 0.0247 0.8602
5716 0.1175 0.2797 0.0260 0.1163 0.2789 0.0260 0.8444

T 0.0956 0.2954 0.0271 0.0953 0.2959 0.0270 0.8362

105020-12
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TABLE 1. The real part contributions of each diagram for b@handn-average of a scattering amplitude for varidiswith fixed
u=1.0m.

[K//m ~Re[M{{ ~RefM$2 ~RefM{2 ~Re[M{2 —~Re[M£2 ~Re(M{2
0.1 1.5250 0.3171 0.0008 1.5247 0.3144 0.0008
1.0 0.2585 0.2307 0.0173 0.2592 0.2303 0.0173
10 0.0063 0.0036 0.0002 0.0053 0.0035 0.0002
where 0(x—2)
Fl(kal 1zvq_L): (211)1 (Alo)
2 2 X—2Z
_ gtmt €
a4 = -2
‘ ‘ Fy(1 K @1 ) 6z=x) (3,2
_XI_ ; _Za_qL = ) )
Ptk (k,—q)?+u® € ' ) =X ALl
92 = X—z R (ALD)
2 2 o(y—z
- pepo dFMT € Fa(y.l ;z.a0)= S (4.0,
g;=P"P 1> +|1—z’ -z
(A12)
—1,)%+ u? €
q;=P+I‘+(% L)t —i : 6(z—y)
=y =y Fil-y,—l,;1-2,—q,)= 7=y (3.9,
Here, the on-shell conditiork?=m? gives (A13)
Bt k? +m? as 1
= (A3) Fz(x,ki,z,qL..l—y,—Il,1—z,—qL):@,
(Al4)
and similarlyl?=m? gives
1
|2+m2 v R . . —
Pt~ =t . (A%) Fo(l—x,—k, ;1-z—q, 2y, ;2,9)) @2
y (A15)
Also, from the zero binding energy of the initial and final )
scattering particles, we can get In case ofx>z, y>z, we havei one p_oleq[) in the lower
half plane and three poles{ ,q5 ,q,) in the upper plane.
kf+m2 |i+m2 Hence, if we do a contour integration by enclosing a lower
P+P7:x(1—x) =ya—y) (A5)  half plane, we obtain the contribution of integral as
Now, if we introduce the notation(ij) for i#j (i,j (1 dz 0(x—2) 0(y—2) daq, 19113
=1,2,3,4) which is defined as ') 22mz(1-2) x—2z y-z 2mz (1213
. X(1,4), (A16)
(1h)=g=—5= (A6)
i j R
. . _ which is equal to—i/(27)*M{V(k,1,7).
then the followmg properties are obtained: In case ofx>z, y<z, we have two po|e$(£ 1q§) in the
C A7 upper half plane and two poleg( ,q,) in the lower half
(L)==0.0), (A7) plane. Doing a contour integration by enclosing a lower half
. . . . plane, the contribution of integral becomes
(LK) =,k = ,k)(].k). e
A8

ifl dz 0(x—2) 6(z—y) daq, (1.2

With this notation, the functions$;; needed for the-ordered 0 22mz(1-2) x—z z-y (27)2
amplitudesM (Y in Egs.(2.13—(2.18 are given by
X(1,3(1,49+(4,1)(4,2(4,3]. (A17)

(A9)

1
Fo(x,ki;z,ql)=m,

Since
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(1,2(1,3(1,49+(4.1(4,2(4,3 —i/(2m)3(MSP(K,1,n) + M (K, 1,R)).
(1L2[(1,3(34—(1,4(34]+(4,1(4,2(4.3
(2.DB.D(BH+[(2D(1.49-(24(1.9](3.9

Similarly, the equivalence between the remaining cases of
pole positions and the rest of theordered diagrams can be

=(2,)(3,1(3,4+(2,1)(2,4(3,4), shown by similar steps af~ contour integration. This shows
that the sum of six~ordered diagrams in Fig. 5 is same as
Equation(A17) is equal to the single Feynman diagram in Fig. 4.
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