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Rotation average in light cone time-ordered perturbation theory
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We present a rotation average of the two-body scattering amplitude in light cone time-~t-!ordered pertur-
bation theory. Using a rotation average procedure, we show that the contribution of an individual time-ordered
diagram can be quantified in a Lorentz invariant way. The number of time-ordered diagrams can also be
reduced by half, if the masses of the two bodies are the same. In the numerical example off3 theory, we find
that the higher Fock-state contribution is quite small in light cone quantization.@S0556-2821~98!11420-0#

PACS number~s!: 11.80.Et, 11.10.St, 11.55.Bq
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I. INTRODUCTION

The invariant amplitude obtained by calculating a cova
ant Feynman diagram can equivalently be given by the s
of the corresponding time-ordered diagrams in old fashio
perturbation theory~OFPT!. As is well known@1,2#, the in-
dividual time-ordered diagram is not invariant under some
the Lorentz transformations, e.g., boost or rotation, while
covariant Feynman diagram is completely Lorentz invaria
Under which part of the Lorentz transformations the in
vidual diagram is not invariant depends on whether we
ordinary equal-t quantization or light cone equal-t quantiza-
tion where t5t1z/c. The Poincare´ algebra in these two
schemes is significantly different. It is often remarked tha
the equal-t quantization, the boost operation is dynamic a
the rotation is kinematic, while in the equal-t quantization,
the rotation is dynamic and the boost operation is kinem
@3#. These significantly different features of Poincare´ algebra
in two schemes lead to the noninvariance of the individ
diagrams under different parts of Lorentz transformations
the equal-t quantization, the individual diagram is not invar
ant under the boost transformation, while in the equat
quantization, the individual diagram is not invariant und
the rotation. However, it is crucial to note that the prope
of rotation is very different from the property of boost o
eration because the rotation is compact i.e., closed and
odic, while the boost operation is open and not period
Thus, one may take advantage of the rotation in equt
quantization. Already, M. Fuda@4# suggested the angula
averaging of the potential as a way of restoring Poinc´
invariance in the explicit example ofpN scattering problem.
We have also realized that the physical on-shell partial w
amplitudes presented in Ref.@5# were in fact identical to the
rotation average of the light cone scattering partial wave a

FIG. 1. The lowest diagram for a scattering amplitude in CVP
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plitudes @6#. In this paper, we give an example of rotatio
advantage in OFPT. If we make a rotation average of
individual diagram, then the result is of course invariant u
der rotation and thus the individual diagram can be ma
invariant under the rotation. The similar average proced
for the boost operation cannot be made in the equal-t quan-
tization because the parameter space of boost, i.e., veloc
not compact. As we will show explicitly in this work, th
individual t-ordered diagram can be made invariant und
the entire Lorentz transformation using an average pro
dure. Furthermore, in the calculations of the two-body sc
tering amplitudes where the masses of two bodies are sa
one does not need to calculate the entire number oft-ordered
diagrams, but to calculate only the half of the entire num
of diagrams because the half of total number of diagram
reproduced by the other half. Thus, one can evaluate
magnitude of each diagram in the Lorentz invariant w
once the average procedure is fixed.

In the example of this work, we found that the high
Fock-state contribution is very small in the light cone qua
tization. Our nontrivial point is that this smallness can
asserted in a reference-frame independent way. Without
of generality, but for simplicity, we show this point using a
explicit example of Feynman amplitudes inf3 theory @7#.
However, our method is generic to the equal-t quantization
scheme, and thus applicable to any other field theory. In
work, we calculate the lowest order two-body interacti
diagrams shown in Figs. 1–3 and the real part of one hig
order ladder diagram shown in Figs. 4 and 5. The genera
of these diagrams from the covariant Bethe-Salpeter ke
was discussed in Ref.@8#. A general algorithm of producing
thet-ordered diagrams from any Feynman diagram was a

FIG. 2. The lowest diagrams for a scattering amplitude in
t-ordered OFPT.
©1998 The American Physical Society20-1
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recently presented by Ligterink and Bakker@9#. In Sec. II,
we present analytic calculations of Feynman diagrams sh
in Figs. 3 and 5. In Sec. III, the numerical computations
made and the results are summarized. Conclusions and
cussions follow in Sec. IV. In the Appendix, the equivalen
is shown between the covariant next-to-leading order lad
diagram and the sum oft-ordered diagrams@8,9#.

II. SCATTERING AMPLITUDE

In the f3 covariant perturbation theory~CVPT!, the low-
est order Feynman amplitude for the two-body scattering
given by the single diagram shown in Fig. 1. This sing
diagram in Fig. 1 corresponds to the sum of two diagra
shown in Fig. 2 in the ordinary time~t!-ordered OFPT. How-
ever, as we have discussed in the Introduction~Sec. I!, each
separate diagram in Fig. 2 is not boost invariant even tho
it is invariant under rotation. Only the sum of the two di
grams is completely Lorentz invariant. Now, let us consid
changing the time in OFPT fromt to the light cone timet
5t1x•n̂/c wheren̂ is a unit vector on the light cone surfac
~e.g.,t5t1z/c meansn̂5 ẑ). If we change fromt to t, then
we still have twot-ordered diagrams as shown in Fig.
which apparently look identical to those in Fig. 2. Howev
each diagram in Fig. 3 depends onn̂ and one can easily find
that it is not invariant under rotation, but nevertheless inva
ant under boost. This drastic change of the Lorentz prop
from the case of Fig. 2 is exactly what allows us to make
average of each diagram. By taking advantage of comp
ness in the rotation, we now take the average value of e
diagram in Fig. 3 overn̂.

After diagrams are averaged overn̂, the restoration of the
rotational symmetry is manifest for each diagram. Of cour
the sum of diagrams remains same whether we take the
erage overn̂ or not. If the two particles of massm scatter
with the initial ~final! c.m. momentumk~l!, then the scatter-

FIG. 3. The lowest diagrams for a scattering amplitude in
t-ordered OFPT. Only light cone plus~1! momentum fraction is
shown.

FIG. 4. The next-to-leading order ladder diagram for two-bo
scattering amplitude in CVPT.
10502
n
e
is-

er

is

s

h

r

,

i-
ty
n
t-

ch

,
v-

ing amplitudes,Mi
(0)(k,l,n̂), i 51,2 for the two diagrams in

Fig. 3, are given by~modulo a common constant factor!

M1
~0!~k,l,n̂!5F1~x,k' ;y,l'!, ~2.1!

M2
~0!~k,l,n̂!5F1~12x,2k' ;12y,2 l'!, ~2.2!

5F1~12x,k' ;12y,l'!, ~2.3!

where

F1~x,k' ;y,l'!5
u~x2y!

x2y S k'
2 1m2

x
2

l'
2 1m2

y

2
~k'2 l'!21m2

x2y D 21

~2.4!

with m being the mass of exchanged particle, and

x[
k1

P1 5
1

2 S 11
k•n̂

Ak21m2D , ~2.5!

e

FIG. 5. The next-to-leading order diagrams for two-body sc
tering amplitude in thet-ordered OFPT. Only light cone plus~1!
momentum fraction is shown.

FIG. 6. A sample diagram which appears in thet-ordered OFPT,
but does not appear in thet-ordered OFPT. Only light cone plus~1!
momentum fraction is shown.
0-2
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FIG. 7. The scattering amplitude of each diagram forQ50. un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
t

fol-

ram
of
y[
l 1

P1 5
1

2 S 11
l•n̂

Al21m2D , ~2.6!

k'[k2~k•n̂!n̂, ~2.7!

l'[ l2~ l•n̂!n̂. ~2.8!

From Eqs. ~2.5!–~2.8!, one can easily note tha
(x;k' ;y; l')→(12x;k' ;12y; l') as n̂→2n̂. Also, F1 de-
pends only on the relative sign ofk' andl' . Thus, if we take
the average ofMi

(0)(k,l,n̂) over n̂ and defineM̃ i
(0)(k,l) as

M̃ i
~0!~k,l![

1

4p E dn̂Mi
~0!~k,l,n̂!, ~2.9!

then we find

M̃1
~0!~k,l!5M̃2

~0!~k,l!, ~2.10!
10502
because

M2
~0!~k,l,2n̂!5M1

~0!~k,l,n̂!. ~2.11!

We may summarize our results for the lowest order as
lows:

MSUM
~0! ~k,l!5(

i 51

2

Mi
~0!~k,l,n̂!5(

i 51

2

M̃ i
~0!~k,l!

52M̃1
~0!~k,l!. ~2.12!

From this, we notice that, after averaging overn̂, we not
only restore the rotional symmetry for each separate diag
in Fig. 3, but also we can actually reduce the number
0-3
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FIG. 8. The scattering amplitude of each diagram forQ5p/6. un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
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diagrams necessary for the calculation by half for the tw
body scattering amplitude. The reason for the reduction
the number of diagrams is due to the fact thatn̂→2n̂ cor
responds tox→(12x) and y→(12y) and the two-body
scattering amplitude must be symmetric under this chang
variables. In order to show an explicit example beyond
leading order, let us now consider the next-to-leading or
10502
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ladder diagram in CVPT as shown in Fig. 4.
While in the t-ordered OFPT there are 4!524 diagrams,

we have only 6 diagrams in thet-ordered OFPT~See Fig. 5!.
For example, a diagram shown in Fig. 6 appears in thet-
ordered OFPT, but not in thet-ordered OFPT@2,10#.

In this next-to-leading order, the scattering amplitud
Mi

(1)(k,l,n̂), i 51,2, . . . ,6 for the sixdiagrams in Fig. 5 are
given in thet-ordered OFPT by
M1
~1!~k,l,n̂!5F E G F1~x,k' ;z,q'!F1~y,l' ;z,q'!

F0~x,k' ;z,q'!
, ~2.13!

M2
~1!~k,l,n̂!5F E G F1~x,k' ;z,q'!F1~12y,2 l' ;12z,2q'!

F0~x,k' ;z,q'!
, ~2.14!
0-4
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M3
~1!~k,l,n̂!5F E G F1~x,k' ;z,q'!F1~12y,2 l' ;12z,2q'!

F2~x,k' ;z,q'<12y,2 l' ;12z,2q'!
, ~2.15!

M4
~1!~k,l,n̂!5F E G F1~12x,2k' ;12z,2q'!F1~12y,2 l' ;12z,2q'!

F0~x,k' ;z,q'!
, ~2.16!

M5
~1!~k,l,n̂!5F E G F1~12x,2k' ;12z,2q'!F1~y,l' ;z,q'!

F0~x,k' ;z,q'!
, ~2.17!

M6
~1!~k,l,n̂!5F E G F1~12x,2k' ;12z,2q'!F1~y,l' ;z,q'!

F2~12x,2k' ;12z,2q'<y,l' ;z,q'!
, ~2.18!

FIG. 9. The scattering amplitude of each diagram forQ5p/4.un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
105020-5
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FIG. 10. The scattering amplitude of each diagram forU5p/3.un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
e-
whereF1 is defined in Eq.~2.4! and

F0~x,k' ;z,q'!5
k'

2 1m2

x~12x!
2

q'
2 1m2

z~12z!
, ~2.19!

F2~x,k' ;z,q'<y,l' ;z8,q'8 !

5
k'

2 1m2

x
2

l'
2 1m2

12y

2
~k'2q'!21m2

x2z
2

~ l'2q'8 !21m2

y2z8
.

~2.20!

Here,

F E G[E
0

1 dz

2z~12z!
E d2q' , ~2.21!
10502
and

z[
q1

P1 5
1

2 S 11
q•n̂

Aq21m2D , ~2.22!

q'5q2~q•n̂!n̂. ~2.23!

In the Appendix, we show explicitly the equivalence b
tween the CVPT and the sum oft-ordered OFPT diagrams in
Fig. 5. Since (z;q')→(12z;q') as n̂→2n̂, we have

M4
~1!~k,l,2n̂!5Ml

~1!~k,l,n̂!, ~2.24!

M5
~1!~k,l,2n̂!5M2

~1!~k,l,n̂!, ~2.25!

M6
~1!~k,l,2n̂!5M3

~1!~k,l,n̂!, ~2.26!

and thus
0-6
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ROTATION AVERAGE IN LIGHT CONE TIME-ORDERED . . . PHYSICAL REVIEW D 58 105020
M̃1
~1!~k,l!5M̃4

~1!~k,l!, ~2.27!

M̃2
~1!~k,l!5M̃5

~1!~k,l!, ~2.28!

M̃3
~1!~k,l!5M̃6

~1!~k,l!, ~2.29!

where

M̃ i
~1!~k,l!5

1

4p E dn̂Mi
~1!~k,l,n̂!. ~2.30!

Again, we may summarize our results for the next-
leading order ladder diagrams as follows:

MSUM
~1! ~k,l!5(

i 51

6

Mi
~1!~k,l,n̂!5(

i 51

6

M̃ i
~1!~k,l!

52(
i 51

3

M̃ i
~1!~k,l!. ~2.31!

Thus, we need to calculate only the three~not six! diagrams
to obtain MSUM

(1) (k,l). In the next section, we calculate nu
merically M̃ i

(1) , (i 51,2, . . . ,6) andverify Eqs. ~2.27!–
~2.29!. Our numerical results also show how small the high
Fock-state contributionM̃3

(1)(k,l)(M̃6
(1)(k,l)) is.

III. CALCULATION SETUP

As shown explicitly byn̂-dependence, each amplitude
the equal-t OFPT does not have rotational symmetry. Ne
ertheless, all then̂-dependence from each amplitude mu
cancel each other if we sum them up. The rotational sym
try must be recovered in the Feynman amplitude level.
first confirm this numerically usingMi

(1)(k,l,n̂) given by
Eqs. ~2.13!–~2.18!. For the numerical calculation, we firs
observe that the amplitudesMi

(1) are complex in general. We
thus separate the real and imaginary parts ofMi

(1) using the
usual relation

lim
e→0

1

x1 i e
5PVS 1

xD2 ipd~x!, ~3.1!

where PV(1/x) is the principle value of 1/x. Hence, the rea
part ofMi

(1)(k,l,n̂), i 51,2,4,5 are given by Cauchy principl
10502
-

r

-
t
e-
e

values. However, the higher Fock-state contributionsM3
(1)

andM6
(1) turn out to be real because the intermediate stat

higher Fock-states cannot go to the on-energy-shell. In
numerical work, we will focus only on the real part of eac
amplitude. For the Cauchy principle value calculation,
change the integration variables, (z,q'), into ~q! with the
fixed n̂ and do the integration over a spherical coordinate
q. Since

z5
1

2 S 11
q•n̂

Aq21m2D ~3.2!

andq25(q•n̂)21q'
2 , one can obtain

dz

2z~12z!
5

d~q•n̂!

Aq21m2
, ~3.3!

and thus the integration measure defined in Eq.~2.21! can be
rewritten as

F E G5E d3q

Aq21m2
, ~3.4!

whered3q5q2duqudV(q). Using the relations between th
variable sets (x,k' ;y,l' ;z,q') and ~k,l,q! with the fixed n̂,
one can change the functionsF0 , F1 and F2 given by Eqs.
~2.19!, ~2.4! and ~2.20!, respectively, as follows:

F0~x,k' ;z,q'!54~k22q2!, ~3.5!

F1~x,k' ;z,q'!5F1„k,n̂;uqu,V~q!…, ~3.6!

F2~x,k' ;z,q'<z8,q'8 ;y,l'!

5F2„k,l,n̂;uqu,V~q!;uq8u,V~q8!….
~3.7!

Also, for the numerical calculation of a Cauchy princip
value ~PV!, we note that forx0.0

PVE
0

` f ~x!

x22x0
2 5E

0

` f ~x!2 f ~x0!

x22x0
2 . ~3.8!

Thus the real part ofM1
(1)(k,l,n̂) is given by
Re$M1
~1!~k,l,n̂!%5PVF E G F1~x,k' ;z,q'!F1~y,l' ;z,q'!

F0~x,k' ;z,q'!
~3.9!

5E dV~q!S E
0

`

duqu
F„k,l,n̂;uqu,V~q!…2F„k,l,n̂;uku,V~q!…

k22q2 D , ~3.10!

where

F„k,l,n̂;uqu,V~q!…5
q2

4Aq21m2
F1„k,n̂;uqu,V~q!…F1„l,n̂;uqu,V~q!…. ~3.11!
0-7
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FIG. 11. The scattering amplitude of each diagram forU5p/2.un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
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The real parts of all other amplitudes can be written sim
larly.

IV. NUMERICAL RESULTS

For the explicit example of numerical results, we choo
the following kinematics without any loss of generality:

k5uku~0,0,1!, ~4.1!

l5uku~0,sinU,cosU!, ~4.2!

n̂5~sin uncosfn ,sin unsin fn ,cosun!, ~4.3!

whereU is an angle betweenk and l, andun(fn) is a po-
lar~azimuthal! angle ofn̂.

Because we are interested in the dependence of the
tering amplitude on the directionn̂, we fix the scattering
plane as the plane made byŷ andẑ and the direction of initial
momentumk asẑ and then vary the directionn̂. The effect of
10502
-

e

at-

rotating the directionn̂ in a given scattering plane defined b
its perpendicular directionk3 l is equivalent to the effect o
rotatingk3 l in a given direction of the light cone time evo
lution, e.g.,t5t1z. In any case, the point is the dynamic
dependent on the relative angle betweenn̂ andk3 l @6#.

In Figs. 7–15, the scattering amplitudes of each diagr
are plotted foruku51.0 andm51.0 in units of a mass of
scattering particle,m, with given scattering angle,U50,
p/6, p/4, p/3, p/2, 2p/3, 3p/4, 5p/6 and p. From these
figures, we can easily see that each amplitude has the de
dence on the angles ofn̂, un and fn , but the sum of all
amplitudesMSUM

(1) is independent fromun andfn within the
numerical error. This shows the recovery of rotational sy
metry in the Feynman amplitude level@11#. It is also very
interesting to note that higher Fock-state contributions,M3

(1)

and M6
(1), are quite suppressed@12#. The similar behavior

has been observed for various scattering angleU. The real
part numerical values ofM̃ i

(1) are listed in Table I for various
U with given uku/m51.0,m/m51.0. The Table I also veri-
0-8
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FIG. 12. The scattering amplitude of each diagram forU52p/3.un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
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fies M̃1
(1)5M̃4

(1) , M̃2
(1)5M̃5

(1) andM̃3
(1)5M̃6

(1) for variousU
within the numerical errors. Finally in Table II, the real pa
of S-wave scattering amplitude given by

Re$M̃ i ,S
~1!%[

1

2 E
0

p

sin UdU Re$M̃ i
~1!% ~4.4!

is listed for various uku/m50.1,1.0,10 with givenm/m
51.0. This also numerically verifies the smallness of
higher Fock-state contributions.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we have shown that eacht-ordered ampli-
tude can be made as the Lorentz invariant amplitude by
ing advantage of a distinguished feature in the light co
quantization and making an average over the light cone
face defined byn̂. Such process of averaging was possible
the light cone quantization method because the rota
which is the dynamical part of this quantization method
10502
e

k-
e
r-

n
n

actually compact. This feature is drastically different fro
the ordinary equal-t quantization, where the dynamical pa
occurs in the boost operation, but the parameter space of
operation is not closed. We regard this as an explicit exam
of advantage in the equal-t quantization over the equal-t
quantization. The rotation average of eacht-ordered scatter-
ing amplitude not only provided the Lorentz-invariant a
sessment of each amplitude, but also reduced the numb
diagrams to be calculated if the masses of two bodies
same. For the explicit numerical examples, we have ca
lated the real part of next-to-leading order ladder diagram
f3 theory. As shown in Figs. 7–15, the sum of all diagram
is always independent of then̂ choice, i.e., reference-fram
independent or Lorentz invariant, even though eacht-
ordered diagram (Mi

(1) , i 51,2, . . . ,6) is notLorentz invari-
ant. Also, the numerical values ofn̂-averaged amplitudes
~Re$M̃i

(1)%, i51,2, . . . ,6)presented in Table I not only verify
the equivalence,M̃1

(1)5M̃4
(1) , etc., but also show the signifi

cant suppression ofM̃3
(1)(M̃6

(1)) compared toM̃1
(1)(M̃4

(1)) or
0-9
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FIG. 13. The scattering amplitude of each diagram forU53p/4.un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
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M̃2
(1)(M̃5

(1)) for whole range of scattering angle. The real p
of S-wave scattering amplitudesM̃ i ,S

(1) presented in Table II
also verify the negligible contribution from the higher Foc
state intermediate states. Thusn̂-averaging process exhibits
unique advantage of assessing the contribution from e
intermediate Fock-states. This brings up further interes
application to the gauge theory such as QED and QCD
well as to the multibody scattering amplitudes as futu
works.
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APPENDIX

In this appendix, we show the equivalence between
CVPT diagram in Fig. 4 and the sum oft-ordered OFPT
diagrams in Fig. 5. The method used in this Appendix w
presented in Ref.@8# for the Bethe-Salpeter approach. R
cently, Ligterink and Bakker@9# also proposed a general a
gorithm that produces thet-ordered diagrams from an
Feynman diagram. The scattering amplitude from the d
gram in Fig. 4 is given by

M1~k,l!5E d4q

~2p!4

1

q22m21 i e

3
1

~k2q!22m21 i e

1

~P2q!22m21 i e

3
1

~q2 l !22m21 i e
.

0-10
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FIG. 14. The scattering amplitude of each diagram forU55p/6.un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.
In terms of light cone variables,M (1)(k,l) can be rewrit-
ten as

M ~1!~k,l,n̂!5E
0

P1 dq1

2~2p!
E d2q'

~2p!2 E
2`

` dq2

2p

3
1

q1q22q'
2 2m21 i e

3
1

~k12q1!~k22q2!2~k'2q'!22m21 i e

3
1

~P12q1!~P22q2!2q'
2 2m21 i e

3
1

~q12 l 1!~q22 l 2!2~q'2 l'!22m21 i e
.

~A1!
10502
If we define momentum fractions,x, y, z as

k1[xP1,

l 1[yP1,

q1[zP1,

and make a change of variable such asP1q2→q2, we ob-
tain

M ~1!~k,l,n̂!5E
0

1 dz

2~2p!z~12z!

1

x2z

1

z2y
E d2q'

~2p!2

3E
2`

` dq2

2p

1

q22q1
2

1

q22q2
2

1

q22q3
2

3
1

q22q4
2 , ~A2!
0-11
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FIG. 15. The scattering amplitude of each diagram forU5p. un axis andfn axis are scaled in units ofp/10 and in units ofp/5,
respectively.

TABLE I. The real part contributions of eachn̂-averaged scattering amplitudes for variousQ with fixed m51.0m, uku51.0m.

Q 2Re$M̃1
(1)% 2Re$M̃2

(1)% 2Re$M̃3
(1)% 2Re$M̃4

(1)% 2Re$M̃5
(1)% 2Re$M̃6

(1)% 2Re$MSUM
(1) %

0 0.6870 0.0000 0.0000 0.6858 0.0000 0.0000 1.3728
p/6 0.4906 0.1488 0.0050 0.4899 0.1492 0.0050 1.2884
p/4 0.4039 0.1907 0.0089 0.4036 0.1902 0.0089 1.2062
p/3 0.3315 0.2156 0.0125 0.3326 0.2159 0.0125 1.1207
p/2 0.2263 0.2417 0.0186 0.2258 0.2420 0.0186 0.9731
2p/3 0.1599 0.2591 0.0231 0.1602 0.2588 0.0231 0.8842
3p/4 0.1362 0.2690 0.0248 0.1366 0.2689 0.0247 0.8602
5p/6 0.1175 0.2797 0.0260 0.1163 0.2789 0.0260 0.8444

p 0.0956 0.2954 0.0271 0.0953 0.2959 0.0270 0.8362
105020-12
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TABLE II. The real part contributions of each diagram for bothQ and ñ-average of a scattering amplitude for variousuku with fixed
m51.0m.

uku/m 2Re$M̃1,S
(1)% 2Re$M̃2,S

(1)% 2Re$M̃3,S
(1)% 2Re$M̃4,S

(1)% 2Re$M̃5,S
(1)% 2Re$M̃6,S

(1)%

0.1 1.5250 0.3171 0.0008 1.5247 0.3144 0.0008
1.0 0.2585 0.2307 0.0173 0.2592 0.2303 0.0173

10 0.0063 0.0036 0.0002 0.0053 0.0035 0.0002
al

er

alf
where

q1
25

q'
2 1m2

z
2 i

e

z
,

q2
25P1k22

~k'2q'!21m2

x2z
1 i

e

x2z
,

q3
25P1P22

q'
2 1m2

12z
1 i

e

12z
,

q4
25P1l 21

~q'2 l'!21m2

z2y
2 i

e

z2y
.

Here, the on-shell condition,k25m2 gives

P1k25
k'

2 1m2

x
, ~A3!

and similarlyl 25m2 gives

P1l 25
l'
2 1m2

y
. ~A4!

Also, from the zero binding energy of the initial and fin
scattering particles, we can get

P1P25
k'

2 1m2

x~12x!
5

l'
2 1m2

y~12y!
. ~A5!

Now, if we introduce the notation~i,j! for iÞ j ( i , j
51,2,3,4) which is defined as

~ i , j ![
1

qi
22qj

2 , ~A6!

then the following properties are obtained:

~ i , j !52~ j ,i !, ~A7!

~ i , j !~ i ,k!5~ i , j !~ j ,k!2~ i ,k!~ j ,k!.
~A8!

With this notation, the functions,Fi needed for thet-ordered
amplitudesMi

(1) in Eqs.~2.13!–~2.18! are given by

F0~x,k' ;z,q'!5
1

~3,1!
, ~A9!
10502
F1~x,k' ;z,q'!5
u~x2z!

x2z
~2,1!, ~A10!

F1~12x,2k' ;12z,2q'!5
u~z2x!

z2x
~3,2!,

~A11!

F1~y,l' ;z,q'!5
u~y2z!

y2z
~4,1!,

~A12!

F1~12y,2 l' ;12z,2q'!5
u~z2y!

z2y
~3,4!,

~A13!

F2~x,k' ;z,q'<12y,2 l' ;12z,2q'!5
1

~2,4!
,

~A14!

F2~12x,2k' ;12z2q'<y,l' ;z,q'!5
1

~4,2!
.

~A15!

In case ofx.z, y.z, we have one pole (q1
2) in the lower

half plane and three poles(q2
2 ,q3

2 ,q4
2) in the upper plane.

Hence, if we do a contour integration by enclosing a low
half plane, we obtain the contribution of integral as

i E
0

1 dz

2~2p!z~12z!

u~x2z!

x2z

u~y2z!

y2z E dq'

~2p!2 ~1,2!~1,3!

3~1,4!, ~A16!

which is equal to2 i /(2p)3M1
(1)(k,l,n̂).

In case ofx.z, y,z, we have two poles(q2
2 ,q3

2) in the
upper half plane and two poles(q1

2 ,q4
2) in the lower half

plane. Doing a contour integration by enclosing a lower h
plane, the contribution of integral becomes

2 i E
0

1 dz

2~2p!z~12z!

u~x2z!

x2z

u~z2y!

z2y E dq'

~2p!2
@~1,2!

3~1,3!~1,4!1~4,1!~4,2!~4,3!#. ~A17!

Since
0-13
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~1,2!~1,3!~1,4!1~4,1!~4,2!~4,3!

5~1,2!@~1,3!~3,4!2~1,4!~3,4!#1~4,1!~4,2!~4,3!

5~2,1!~3,1!~3,4!1@~2,1!~1,4!2~2,4!~1,4!#~3,4!

5~2,1!~3,1!~3,4!1~2,1!~2,4!~3,4!,

Equation~A17! is equal to
ar

10502
2 i /~2p!3
„M2

~1!~k,l,n̂!1M3
~1!~k,l,n̂!….

Similarly, the equivalence between the remaining cases
pole positions and the rest of thet-ordered diagrams can b
shown by similar steps ofq2 contour integration. This show
that the sum of sixt-ordered diagrams in Fig. 5 is same
the single Feynman diagram in Fig. 4.
J.
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